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Classification of two-color multi-photon absorption structures 

When the isolated attosecond pulse is absorbed by the helium gas in the presence of a 

few-cycle near infrared (NIR) laser field, we observe new absorption features, which shift in 

energy as the delay is scanned from zero to -25 fs, and which oscillate in absorption strength in 

the region of temporal overlap near zero delay. We can consider the absorption at large negative 

delays to be related to a “sequential” process, where the XUV photons in the vicinity of the 1s2p 

energy level are absorbed to a transient “virtual” excited state, and the delayed NIR pulse later 

excites the electron to a 1snl state (l = s, d) which cannot be populated by the XUV pulse alone 

due to dipole selection rules. The experimental data in Fig. 3a in the main text is difficult to 
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interpret without the aid of theoretical simulations, due to the high intensity and broad bandwidth 

of the dressing laser field. With lower dressing laser intensities, the broadening of the absorption 

lines is substantially smaller (see Fig. 1c in the main text), and the interpretation of the data is 

somewhat simplified. Furthermore, the large AC Stark and ponderomotive energy level shifts are 

suppressed, allowing us to separate the contributions of various 1snl states to the virtual state 

absorption lines. Figs. 1a and b show the measured absorbance in the vicinity of the 1s2p energy 

level for lower dressing laser intensities of 7×10
11

 W/cm
2
 and 5×10

12
 W/cm

2
, respectively, with 

features corresponding to the virtual states labeled. 

 

Fig. 1 | Two-color multi-photon absorption in time-resolved absorption. The 

absorption in the vicinity of the 1s2p state at lower dressing laser intensities of a, 

7×10
11

 W/cm
2
 and b, 5×10

12
 W/cm

2
 allow for experimental identification of the 

virtual states appearing in the laser-dressed absorption. 

 

 While the features observed near zero delay are rather broad and appear to result from the 

contribution of several Stark-shifted 1sns and 1snd states, the absorption features can be traced 
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back to large negative delays, where the absorption lines become relatively narrow and are not 

affected by AC Stark shifts. We observe the 3s
-
 absorption feature at an energy of ssE 31  - 1.5 eV 

= 21.4 eV, the 3d
-
 absorption feature at an energy of dsE 31  - 1.5 eV = 21.6 eV, the 4s

-
 absorption 

feature at an energy of ssE 41  - 1.7 eV = 22.0 eV, the 2s
+
 absorption feature at an energy of ssE 21  

+ 1.6 eV = 22.2 eV, and the np
2-

 absorption feature at an energy of snpE1  - 2×1.7 eV = 21.0 eV 

(for example, psE 61  = 24.21 eV and higher-lying states). While the energy differences between 

the transient state absorption features and the field-free final states all lie within the bandwidth of 

the few-cycle laser field, it is not immediately clear why the energy differences are not consistent 

for all states.  

 The classification of the absorption peaks can be confirmed by solution of the time-

dependent Schrödinger equation. Whereas the simulations shown in Figures 2b and 4a in the 

main text result from solution of the coupled equations and can therefore consider only a limited 

number of excited states, here we fully consider the transient absorption of the XUV radiation by 

the helium atom in the presence of the NIR laser field. The XUV field is weak (~10
10

 W/cm
2
) 

and can be treated as a perturbation. The NIR field, on the contrary, is regarded as weak only for 

the helium ground state. All excited states can be strongly perturbed by the field, resulting in 

substantial shifting and broadening of the energy levels. Since the duration of the NIR laser is 

much longer than that of the XUV pulse, we extend the non-Hermitian Floquet theory
1, 2

 to 

describe the interaction of the atom with the NIR field nonperturbatively. The Floquet state is 

characterized by the complex quasienergy, with its real part reflecting the AC Stark shift of the 

atomic energy level in the laser field and the imaginary part equal to –Γ/2 where Γ is the decay 

rate of the atomic state in the external field. Then, the correction to the imaginary part of the 

quasienergy due to the XUV field is directly related to the absorption rate of XUV photons. The 
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N-photon absorption cross-section can be calculated as the N-photon absorption rate Γ divided by 

NI , where I is the photon flux and N is the number of photons absorbed
1
. 

 We describe the helium atom by an accurate model potential which reproduces the 

ground, singly-excited, and Rydberg states to a high precision
3
. To calculate the XUV 

photoabsorption cross section, we extend the non-Hermitian Floquet perturbation theory
4
 to the 

current XUV+NIR field transient absorption problem. First, we solve for the NIR-dressed atom 

wave functions non-perturbatively using the non-Hermitian Floquet theory
1, 2

. The Floquet wave 

function ),( tr  is represented as a product of the quasienergy exponential factor and a time-

periodic function ),( tr : 

),()exp(),( ttit rr   .     (1) 

All equations are given in atomic units unless otherwise noted. The time-periodic wave function 

),( tr  is the eigenfunction of the Floquet Hamiltonian H , defined in the composite Hilbert 

space: 

),(),( ttH rr    ,      (2) 

t
itVHH NIR



 ),(0 r .     (3) 

By employing the complex scaling transformation
1, 2

 of the spatial coordinates and 

Fourier series expansion of the periodic function ),( tr  in the time domain, Eq. (2) is 

converted into a time-independent non-Hermitian Floquet matrix eigenvalue problem, and one 

can obtain a set of complex quasienergies and corresponding left and right eigenvectors which 

possess the property of biorthogonality. Then we apply the perturbation theory with respect to 

the XUV field ),( tVXUV r . To analyze the frequency-resolved absorption of the XUV field by the 

laser-dressed atom, we consider a monochromatic XUV field with the frequency  : 
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).exp()()exp()(),( tiVtiVtVXUV   rrr    (4) 

The eigenvalue problem to solve is now 

  ),(),(),( 000 tttVH XUV rrr   .    (5) 

The wavefunction ),(0 tr  and the eigenvalue 0  can be sought in the form of a series expansion 

in powers of the perturbation XUVV : 

...),( )2(

0

)1(

0

)0(

00   tr     (6) 

...)2(

0

)1(

0

)0(

00        (7) 

Here )0(

0  and )0(

0  are the unperturbed ground state eigenfunction and eigenvalue that satisfy 

Eq. (2). The first order correction to the quasienergy )1(

0  vanishes due to parity restrictions if we 

neglect the dressing laser effect on the ground state of the helium atom. This approximation is 

well justified for the intensities of the NIR field used in the experiment. The second-order 

correction )2(

0  can be represented as follows: 

)0(

0

)0(

0

)2(

0  XUVXUV GVV ,     (8) 

where the reduced Green’s function G  is defined by the expansion on the basis of the 

unperturbed eigenfunctions )0(

n  of the Floquet Hamiltonian H : 


 


0

)0(

0

)0(

)0()0(

n n

nn
G




.      (9) 

Finally, the laser-assisted photoabsorption cross-section   at the frequency   is 

calculated as the decay rate (twice the absolute value of the imaginary part of the quasienergy) 

divided by the photon flux: 

 )0(

0

)0(

0Im
16




 XUVXUV GVV
c

 .    (10) 
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Substituting the Green’s function of Eq. (9) into Eq. (10), we obtain: 





0n

n ,      (11) 

with 




















)0(

0

)0(

)0(

0

)0()0()0(

0
Im

16






n

XUVnnXUV

n

VV

c
.   (12) 

The quantity n  is the contribution of the excitation of the n th Floquet state to the total cross-

section. 

 

Fig. 2 | Contribution to the total cross-section of individual Floquet states. 

The 1s2p state (red) is the dominant contribution to the cross-section, while new 

absorption lines originating from the dressed 1s3s (blue) and 1s3d (green) appear 

with the addition of the laser. The dressing laser intensity was 1×10
11

 W/cm
2
. 

 

 In Fig. 2, we show the individual contribution to the photoabsorption cross-section of the 

laser-dressed helium atom by the Floquet (or dressed) states originating from the 1s2p, 1s3s, and 

1s3d atomic levels. The additional peaks which appear in the vicinity of the 1s
2
-1s2p absorption 

line have been identified as contributed from the excitation of the dressed 1s3s and 1s3d levels, 

respectively. An alternative method of identification of additional peaks in the cross section is 
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based on the calculation of the photoabsorption cross-section with atomic Hamiltonians which 

lack some of the energy levels: 

ddd

d EHH 3330

3

0  ,    (13) 

sssddd

ds EEHH 3333330

33

0   .   (14) 

Here the Hamiltonian dH 3

0  does not have the 1s3d energy level, while both 1s3d and 1s3s 

energy levels are absent in the Hamiltonian dsH 33

0 . Comparing the results of the calculations with 

the Hamiltonians 0H , dH 3

0 , and dsH 33

0 , as shown in Fig. 2 for a dressing laser intensity of 

1×10
11

 W/cm
2
, one can unambiguously identify the origin of different absorption lines in the 

frequency range of interest. The low dressing laser intensity was chosen to minimize the effects 

of the AC Stark shifts, which are also modified by removing energy levels from the Hamiltonian. 

The main 1s2p absorption line is located approximately at 21.19 eV, while the additional 1s3s 

(3s
-
) and 1s3d (3d

-
) subpeaks are found at the photon energies of 21.27 and 21.53 eV, 

respectively. The line positions for the Hamiltonians dH 3

0 and dsH 33

0  are slightly different 

because the interactions with the 1s3d (or both 1s3d and 1s3s) states, which also contribute to the 

AC Stark shift, are missing for these Hamiltonians. Generally it can be understood that such 

additional peaks arise due to excitation of other atomic levels by the combination of the XUV 

and NIR fields. The strongest peaks correspond to absorption of one XUV and one NIR photon. 

 

Oscillatory Structures in the Time-Delay-Resolved Transition Probability 

In the previous section, we have applied the non-Hermitian Floquet perturbation theory to 

the monochromatic XUV field. Here, we consider an isolated attosecond XUV pulse and discuss 

the dependence of the transition probabilities on the time delay between the XUV pulse and the 
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NIR field. We assume that the NIR field is monochromatic with the frequency NIR  and field 

strength NIRF : 

)cos(),( 0tzFtV NIRNIR r .     (15) 

Here, linear polarization in the z-direction is assumed. For the XUV pulse, we adopt the 

Gaussian shape in time with the width XUV , the central frequency XUV , and the same 

polarization direction: 

 ti
t

zFtV XUV

XUV

D
XUVXUV 












 
 exp

)(
exp),(

2

2

r .   (16) 

Here, XUVF  is the peak field strength and D  is the time delay between the XUV pulse and the 

NIR field. The wave function ),( tr  of the electron subjected to the combination of the XUV 

and NIR fields can be expanded on the basis of the Floquet wave functions 

),()exp(),( )0()0()0( ttit nnn rr   defined by Eq. (1) in the NIR field only: 

 
n

nnn titCt ),()exp()(),( )0()0( rr  ,   (17) 

where the expansion coefficients )(tCn  vary in time during the XUV pulse only. Before the 

XUV pulse, 0nnC   (only one Floquet state corresponding to the initial atomic energy level is 

populated). After the XUV pulse, the coefficient nC  has the meaning of the transition amplitude 

to the n th Floquet state. Employing the first-order time-dependent perturbation theory with 

respect to XUVV , the transition amplitude nC  can be expressed as follows: 

  )0(

0

)0()0(

0

)0( )(exp 




 XUVnnn VtidtiC ,    (18) 

and the corresponding transition probability is obtained as the squared absolute value of nC : 
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2

nn CP  .      (19) 

The time-periodic functions ),()0( tn r  can be expanded in a Fourier series: 







m

mnNIRn timt )()exp(),( )0(

,

)0( rr  .   (20) 

 As we have already mentioned, the NIR field is weak enough that we can neglect the 

dressing of the ground state. Within this approximation, 

)(),( )0(

0,0

)0(

0 rr  t .     (21) 

Using Eqs. (20) and (16) in Eqs. (18) and (19), one obtains: 

2

,

2 )exp()( 





m

DNIRmnXUVXUVn imAFP  ,    (22) 









 2)0(

0

)0(

2

)0(

0

)0(

,, )(
4

exp XUVNIRn
XUV

mnmn mzA 


 .  (23) 

Due to parity restrictions for the dipole matrix elements, the coefficients mnA ,  vanish for odd m if 

the final state has odd parity (such as 1snp) and for even m if the final state has even parity (such 

as 1sns and 1snd). For this reason, the sum in Eq. (22) will contain either odd or even m 

contributions only. In any case, the probability nP  can be expanded in a Fourier series with the 

fundamental 2 NIR  equal to twice the frequency of the NIR field.  Retaining the first few Fourier 

components, the expression for nP can be written as: 

   2

4,

2

4,

2

2,

2

2,

2

0,

2)(   nnnnnXUVXUV

odd

n AAAAAFP   

   )2exp()2exp(Re2 *

2,0,

*

2,0, DNIRnnDNIRnn iAAiAA    

  )4exp()4exp( *

4,0,

*

4,0, DNIRnnDNIRnn iAAiAA    

  )4exp()4exp( *

2,2,

*

2,2, DNIRnnDNIRnn iAAiAA    ,   (24) 
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for the odd states, while for the even final states (such as 1sns and 1snd), it reads as: 

 2

3,

2

3,

2

1,

2

1,

2)(   nnnnXUVXUV

even

n AAAAFP   

 )2exp()2exp(Re2 *

1,1,

*

1,1, DNIRnnDNIRnn iAAiAA     

)2exp()2exp( *

3,1,

*

3,1, DNIRnnDNIRnn iAAiAA     

)4exp()4exp( *

1,3,

*

3,1, DNIRnnDNIRnn iAAiAA    .   (25) 

 

Fig. 3 | Normalized transition probability to dressed 1snp states as a function 

of the time delay. The dressed 1s3s (blue) and 1s3d (green) states exhibit clear 

half-cycle periodicities. 

 

Eqs. (24) and (25) suggest that the transition probability nP  oscillates as a function of the 

time delay D between the XUV and NIR fields with twice the frequency of the NIR field and 

also contains higher-frequency contributions. For weak or moderate NIR fields, the largest 

coefficient mnA ,  is for m = 0; in the perturbative regime, this corresponds to the lowest order 

perturbation theory with respect to the NIR field. Increasing m  by one means also increasing 

the order of perturbation theory by one. Thus, the quarter-cycle (4 NIR ) oscillations for the odd 

final states, Eq. (24), can be obtained from the 2
nd

 order perturbation term (m = ±2) in the 
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transition amplitude. These oscillations are therefore quite small and can be visible only because 

they appear on the satellite absorption line which is shifted by 2 NIR  from the main 1snp line. In 

Fig. 3, we present the delay-dependent transition probabilities from the ground state to the 

dressed 1s3d and 1s3s states at the NIR intensity of 1×10
11

 W/cm
2
. 

 

Fig. 4 | Classification of two- and three-photon absorption pathways and sub-

cycle oscillations. a, Half-cycle oscillations corresponding to two-photon 

absorption pathways. The half-cycle oscillations indicate the first-order 

perturbation with respect to the NIR laser. b, Quarter-cycle oscillations 

corresponding to three-photon absorption pathways. The quarter-cycle oscillation 

of the np
2-

 absorption feature is consistent with the second-order perturbation 

theory. The oscillation peaks are shifted somewhat with respect to the features 

labeled in Fig. 1a and b due to the AC Stark shifts near zero delay. 
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 The relative strengths of the half-cycle and quarter-cycle periodicities can be evaluated 

experimentally by taking the Fourier transform along the delay axis for every photon energy and 

comparing the strengths of the different oscillatory components. The normalized oscillation 

amplitudes of the half- and quarter-cycle oscillations for the data in Fig. 1b are plotted in Figs 4a 

and b, respectively, with the two- and three-photon absorption pathways responsible for the 

oscillations labeled. 

 

Sub-cycle Ponderomotive Shifts 

The ponderomotive energy is the quiver energy of an electron in a laser field, averaged 

over the laser cycle. For our purposes, the ponderomotive energy represents an effective “shift” 

of the ionization potential for an electron ionized into a laser-dressed continuum state. Previous 

work
5
 has demonstrated that the energy levels of bound states exhibit a sub-cycle energy shift, 

which is caused by the sub-cycle AC Stark shift. When the dressing laser field is not resonant 

with any atomic transition frequency, the bound electron energy levels shift according to the 

square of the instantaneous field strength. The nonresonant condition can be met in two cases: 

(1) the dressing laser frequency is much smaller than the spacing between energy levels or (2) 

the dressing laser frequency is much larger than the spacing between energy levels. The first case 

represents the DC limit, whereas case (2) applies for Rydberg energy levels in atoms and was 

investigated in Ref. 5. However, this effect can be observed in absorption experiments only when 

the dressing laser intensity is high enough to substantially ionize the excited state population, 

giving the state an effectively short lifetime, since absorption is by definition a time-integrated 

process. 
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Fig. 5 | Ponderomotive energy shifts in the absorbance spectrum. a, 
Absorbance spectrum for different laser peak intensities at a fixed delay where the 

peak shift is maximal. The vertical dashed lines show the ionization potential Ip 

(24.58 eV, gray) and the ponderomotive shifted ionization potential Ip+Up for 

dressing laser intensities of 7×10
11

 (black), 5×10
12

 (red), and 1×10
13

 W/cm
2
 

(blue). b, Absorbance spectrum for a laser peak intensity of 1×10
13

 W/cm
2
 for 

different time delays. When the two pulses overlap, the absorption threshold shifts 

by approximately 0.5 eV.  

 

 The ponderomotive shift is the extension of the AC Stark shift into the continuum states, 

where the energy levels are infinitesimally spaced and condition (2) is therefore met perfectly. 

Furthermore, the time-resolved absorption process is not limited in resolution by long excited 

state lifetimes, as the electrons are already in the continuum. Therefore, the energy shift of the 

ionization threshold can in principle be measured with high fidelity. The delay-resolved 

absorption near the ionization potential (   = 24.58 eV) is shown in Fig. 3 of the main text. Here, 

we demonstrate that this absorption change is truly due to a shift of the ionization potential. Fig. 
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5a shows the measured absorbance at the maximum energy shifts for the dressing laser 

intensities of 7×10
11

, 5×10
12

, and 1×10
13

 W/cm
2
, along with the corresponding ponderomotive-

shifted ionization potential. In Fig. 5b, we show the measured absorbance for the intensity of 

10
13

 W/cm
2
 measured for three different values of the time delay. For a delay of 0.84 fs, we 

observe a maximum energy shift whereas the shift is minimal at a delay of -1.26 fs. These delays 

are separated by an odd number of laser quarter-cycles. We compare the absorbance at these 

delays with that at 30 fs delay, where no energy shift is observed. While the absorption threshold 

can be found at the ionization potential for the delays of 30 fs and -1.26 fs, it is shifted by 

approximately 0.5 eV at 0.84 fs.   
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